Page 21 - HUB-4 Magazine Issue 82
P. 21
MRF’s & Recycling News
Composition of the paper fraction manual analyses
Consortium meeting at Voith paper machine manufacturer
economy. For us, its most important contribution has been the joint planning and implementation of industrial-scale sorting trials at its Test and Innovation Center.”
Industrial-scale trials at STADLER Test Center: early results are promising
In March, STADLER completed extensive industrial-scale trials at its Test Center in Slovenia to identify and resolve the issues arising in sorting paper from lightweight packaging, residual and commercial waste streams. The sorting process begins with the income stream going through STADLER’s ST2000 ballistic separator, followed by optical sorting with TOMRA Recycling’s AUTOSORT®.
The process was tested on waste collection samples from different areas of Germany, and in different conditions that may affect the sorting process, such as wet or dirty materials. “This is important because the waste collection processes vary from country to country, but also domestically at regional level, and even on a seasonal basis. Also, waste from these streams is often dirty and may be wet. This means that the solution must have the flexibility to manage this variability,” says Annika Ludes.
The tests have generated vast amounts of data, and the analysis is still in the early stages. The RWTH Aachen University team is examining the results of manual and sensor-based analysis of the waste streams to get a good understanding of the ballistic separator’s operation with these materials. It is analysing separation of three main streams: pure paper, separation of paper out of the plastic waste stream, and separation of plastics out of paper.
In terms of the sorting process, the analysis so far has revealed that every paper fraction from the different waste streams has its own characteristics and that, due to its modularity and the range of possible settings, the STADLER STT2000 can be used effectively for sorting non-separated collected paper.
Samplings made earlier in the project to analyse the material composition and paper content of the different waste streams have revealed that approximately 50% of the paper in the
Paper fraction from non- separates collection
Paper fine screening in test scale
lightweight packaging stream could have been disposed of within the separate paper collection. This finding highlighted the need to address the waste collection processes in order to ensure a more effective separation of the streams and, consequently, higher paper recovery rates.
The project is also looking beyond the sorting process, as Alena Spies explains: “Different dissolution and stock preparation options as well as a procedure for the hygienisation of biological contamination and the separation of hazardous substances have been investigated. An additional focus is on the recovery of rejects
that arise during paper recycling processes. Last year a complete recycling process have been conducted from the separation of paper and board from lightweight packaging waste till the production of new cardboard including several sorting and processing steps. In addition, the project is continuously accompanied by an ecological and economical assessment and the transfer of knowledge of the results to the paper industry. With this project, we hope to establish the developed recycling process into the paper industry to achieve a material recycling of paper and board from lightweight packaging, residual and commercial waste.”
Environmental benefits include potential savings of 270,000t CO2
The paper industry has already improved its carbon footprint through optimization of their plants and reducing the energy requirements in the reprocessing of recovered paper. By redirecting the paper from the residual, commercial and lightweight packaging streams into the recycling loop, the process developed by the EnEWA project has a potential according to initial calculations to save some 270,000t of CO2 a year.
Schematic circle of EnEWA
www.hub-4.com September/October - Issue 82
| p21 |